\qquad

1. Label the following statements as true (T) or false (F).
(a) $\mathrm{T} \quad \mathrm{F} \quad$ It is impossible for a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that the kernel $N(T)$ and the range $R(T)$ are the same subspace.
False. Consider $T(x, y)=(y, 0)$
For the following, V and W are vector spaces with finite dimension, $T: V \rightarrow W$ is linear and β is a subset of V.
(b) $\begin{gathered}\mathrm{T} \\ \operatorname{True}\end{gathered} \mathrm{F} \quad$ If β is linearly dependent then $T(\beta)$ is linearly dependent.
(c) $\mathrm{T} \quad \mathrm{F} \quad$ If $T(\beta)$ is linearly dependent, then β is linearly dependent. False. Consider $T(x, y)=(y, 0)$ and $\beta=\{(1,0)\}$.
(In the original review sheet there is no (d).)
(d) $\quad \mathrm{T} \quad \mathrm{F} \quad$ If V and W have the same finite dimension and $T: V \rightarrow W$ is linear and onto, then T is an isomorphism.
True
(e) $\quad \mathrm{T} \quad \mathrm{F} \quad$ If T and U are linear transformations from V to W and both agree on a linearly independent subset of V, then $T=U$.
False. Consider $\beta=\{(1,0)\}, T(x, y)=(x, y), U(x, y)=(x, 2 y)$. T and U agree on the linearly independent set β but are not the same.
(f) $\quad \mathrm{T} \quad \mathrm{F} \quad$ If β spans V, T and U are linear transformations from V to W and both agree on β, then $T=U$.
True. Note that if β is linearly dependent, T and U must be defined in a way that respects the dependence relations on β.
For j-l, V, W, and Z are vector spaces with finite ordered bases α, β, and γ, respectively, $T: V \rightarrow W$ and $U: W \rightarrow Z$ are linear.
(g) $\quad \mathrm{T} \quad \mathrm{F} \quad[U T]_{\alpha}^{\gamma}=[T]_{\alpha}^{\beta}[U]_{\beta}^{\gamma}$.

False. It should be $[U T]_{\alpha}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}$.
(h) $\underset{\substack{\mathrm{True}}}{\mathrm{T}} \quad \mathrm{F} \quad[T(\mathbf{v})]_{\beta}=[T]_{\alpha}^{\beta}[\mathbf{v}]_{\alpha}$.
(i) $\mathrm{T} \quad \mathrm{F} \quad$ Assume $V=W$ but α and β are different. If Q is the change of coordinate matrix that changes α coordinates into β coordinates, then $[T]_{\beta}=Q^{-1}[T]_{\alpha} Q$.
False It should be $[T]_{\alpha}=Q^{-1}[T]_{\beta} Q$, or $[T]_{\beta}=[T]_{\alpha} Q^{-1}$.
2. Find the change of coordinates matrix that changes β coordinates into α coordinates, where β and α are the following bases of P_{2}.

$$
\beta=\left\{1, x, x^{2}\right\}, \quad \alpha=\left\{1,1+x, 1+x+x^{2}\right\}
$$

The matrix is $\left[I_{P_{2}}\right]_{\beta}^{\alpha}=Q$. The first column of Q is $[1]_{\alpha}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}$. The second column of Q is $[x]_{\alpha}$. Since $x=1+x-1,[x]_{\alpha}=\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]^{T}$. The third column of Q is $\left[x^{2}\right]_{\alpha}$. Since $x^{2}=1+x+x^{2}-(1+x)$, $\left[x^{2}\right]_{\alpha}=\left[\begin{array}{lll}0 & -1 & 1\end{array}\right]^{T}$. So $Q=\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$.
3. Determine whether the following linear transformations are invertible. Justify your answer.
(a) $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ by $T\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=\left[\begin{array}{cc}a+b & a \\ c & c+d\end{array}\right]$. Invertible $T^{-1}\left(\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]\right)=\left[\begin{array}{ll}f & e-f \\ g & h-g\end{array}\right]$.
(b) $T: M_{2 \times 2} \rightarrow P_{2}(\mathbb{R})$ by $T\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a+2 b x+(c+d) x^{2}$.

Not invertible The dimension of $M_{2 \times 2}$ isi 4 , and the dimension of $P_{2}(\mathbb{R})$ is 3 . No linear transformation between these two vector spaces can be invertible.

