- 1. Label the following statements as true (T) or false (F).
 - (a) T F It is impossible for a linear map $T : \mathbb{R}^n \to \mathbb{R}^n$ that the kernel N(T) and the range R(T) are the same subspace. False. Consider T(x, y) = (y, 0)

For the following, V and W are vector spaces with finite dimension, $T: V \to W$ is linear and β is a subset of V.

- (b) T F If β is linearly dependent then $T(\beta)$ is linearly dependent. True
- (c) T F If $T(\beta)$ is linearly dependent, then β is linearly dependent. False. Consider T(x, y) = (y, 0) and $\beta = \{(1, 0)\}.$

(In the original review sheet there is no (d).)

- (d) T F If V and W have the same finite dimension and $T: V \to W$ is linear and onto, then T is an isomorphism. True
- (e) T F If T and U are linear transformations from V to W and both agree on a linearly independent subset of V, then T = U. False. Consider $\beta = \{(1,0)\}, T(x,y) = (x,y), U(x,y) = (x,2y)$. T and U agree on the linearly independent set β but are not the same.
- (f) T F If β spans V, T and U are linear transformations from V to W and both agree on β , then T = U. *True.* Note that if β is linearly dependent, T and U must be defined in a way that respects the dependence relations on β . For j-l, V, W, and Z are vector spaces with finite ordered bases α , β , and γ , respectively, $T: V \to W$ and $U: W \to Z$ are linear.
- $\begin{array}{ll} \text{(g)} & \mathbf{T} \quad \mathbf{F} \quad [UT]_{\alpha}^{\gamma} = [T]_{\alpha}^{\beta} \, [U]_{\beta}^{\gamma}.\\ & \textit{False. It should be } [UT]_{\alpha}^{\gamma} = [U]_{\beta}^{\gamma} \, [T]_{\alpha}^{\beta}. \end{array}$
- (h) T F $[T(\mathbf{v})]_{\beta} = [T]_{\alpha}^{\beta} [\mathbf{v}]_{\alpha}.$ True
- (i) T F Assume V = W but α and β are different. If Q is the change of coordinate matrix that changes α coordinates into β coordinates, then $[T]_{\beta} = Q^{-1} [T]_{\alpha} Q$. False It should be $[T]_{\alpha} = Q^{-1} [T]_{\beta} Q$, or $[T]_{\beta} = [T]_{\alpha} Q^{-1}$.

Math 4377

2. Find the change of coordinates matrix that changes β coordinates into α coordinates, where β and α (20) are the following bases of P_2 .

$$\beta = \left\{ 1, \ x, \ x^2 \right\}, \quad \alpha = \left\{ 1, \ 1+x, \ 1+x+x^2 \right\}.$$

The matrix is $[I_{P_2}]^{\alpha}_{\beta} = Q$. The first column of Q is $[1]_{\alpha} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$. The second column of Q is $[x]_{\alpha}$. Since x = 1 + x - 1, $[x]_{\alpha} = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}^T$. The third column of Q is $\begin{bmatrix} x^2 \end{bmatrix}_{\alpha}$. Since $x^2 = 1 + x + x^2 - (1 + x)$, $\begin{bmatrix} x^2 \end{bmatrix}_{\alpha} = \begin{bmatrix} 0 & -1 & 1 \end{bmatrix}^T$. So $Q = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$.

3. Determine whether the following linear transformations are invertible. Justify your answer.

(a)
$$T: M_{2\times 2} \to M_{2\times 2}$$
 by $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a+b & a \\ c & c+d \end{bmatrix}$. (15)
Invertible $T^{-1}\left(\begin{bmatrix} e & f \\ g & h \end{bmatrix}\right) = \begin{bmatrix} f & e-f \\ g & h-g \end{bmatrix}$.
(b) $T: M_{2\times 2} \to P_2(\mathbb{R})$ by $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a+2bx+(c+d)x^2$. (15)

Not invertible The dimension of $M_{2\times 2}$ isi 4, and the dimension of $P_2(\mathbb{R})$ is 3. No linear transformation between these two vector spaces can be invertible.

Page 2