NAME

1. Label the following statements as true (T) or false (F).

- T F a. It is impossible for a linear map $T : R^{n} \to R^{n}$ that the kernel N(T) and the range R(T) are the same subspace.
- For the following, V and W are vector spaces with finite dimension, T: V \rightarrow W is linear and β is a subset of V.
- T F b. If β is linearly dependent then T(β) is linearly dependent.
- T F c. If $T(\beta)$ is linearly dependent, then β is linearly dependent.
- T F e. If V and W have the same finite dimension and T: $V \rightarrow W$ is linear and onto, then T is an isomorphism.
- T F f. If T and U are linear transformations from V to W and both agree on a linearly independent subset of V, then T = U.
- T F g. If β spans V, T and U are linear transformations from V to W and both agree on β , then T = U.
- For j-l, V, W, and Z are vector spaces with finite ordered bases α , β , and γ , respectively, T: V \rightarrow W and U: W \rightarrow Z are linear.
- T F h. $\begin{bmatrix} UT \end{bmatrix}_{\alpha}^{\gamma} = \begin{bmatrix} T \end{bmatrix}_{\alpha}^{\beta} \begin{bmatrix} U \end{bmatrix}_{\beta}^{\gamma}$
- T F i. $[T(v)]_{\beta} = [T]_{\alpha}^{\beta} [v]_{\alpha}$
- T F j. Assume V = W but α and β are different. If Q is the change of coordinate matrix that changes α coordinates into β coordinates, then $[T]_{\beta} = Q^{-1}[T]_{\alpha}Q$
- 2. Find the change of coordinates matrix that changes β coordinates into α coordinates, where β and α are the following bases of P₂.

$$\beta = \{1, x, x^2\}, \quad \alpha = \{1, 1+x, 1+x+x^2\}.$$
 20 pts

3. Determine whether the following linear transformations are invertible. Justify your answer.

a.
$$T: M_{2x2}(\mathbf{R}) \to M_{2x2}(\mathbf{R})$$
 defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+b & a \\ c & c+d \end{pmatrix}$ 15 pts

b.
$$T: M_{2x2}(\mathbf{R}) \to P_2(R)$$
 by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + 2bx + (c+d)x^2$. 15 pts

MATH 4377

4. Let
$$A = \begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix}$$
 and $\beta = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix} \right\}$. Find $\begin{bmatrix} L_A \end{bmatrix}_{\beta}$. Also find an

invertible matrix Q such that $[L_A]_{\beta} = Q^{-1}AQ$. 20 pts

5. Let
$$T: P_2 \to \mathbf{R}$$
 by $T(p(x)) = \int_0^1 3p(x) dx$. Let $\beta = \{1, x, x^2\}$ be the standard basis of P_2 and $\alpha = \{1\}$ be the standard basis of \mathbf{R} . Find $[T]_{\beta}^{\alpha}$. 10 pts