\qquad

1. Label the following statements as true (T) or false (F).

T F a. It is impossible for a linear map $T: R^{n} \rightarrow R^{n}$ that the kernel $N(T)$ and the range $R(T)$ are the same subspace.

For the following, V and W are vector spaces with finite dimension, $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is linear and β is a subset of V .

T F b. If β is linearly dependent then $T(\beta)$ is linearly dependent.
T F c. If $T(\beta)$ is linearly dependent, then β is linearly dependent.
T F e. If V and W have the same finite dimension and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is linear and onto, then T is an isomorphism.

T F f. If T and U are linear transformations from V to W and both agree on a linearly independent subset of V , then $\mathrm{T}=\mathrm{U}$.

T F g. If β spans V, T and U are linear transformations from V to W and both agree on β, then T $=\mathrm{U}$.

For $\mathrm{j}-1, \mathrm{~V}, \mathrm{~W}$, and Z are vector spaces with finite ordered bases α, β, and γ, respectively, $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ and $\mathrm{U}: \mathrm{W} \rightarrow \mathrm{Z}$ are linear.

T F \quad h. $[U T]_{\alpha}^{\gamma}=[T]_{\alpha}^{\beta}[U]_{\beta}^{\gamma}$
$\mathrm{T} \mathrm{F} \quad$ i. $[T(v)]_{\beta}=[T]_{\alpha}^{\beta}[v]_{\alpha}$
T F j. Assume $\mathrm{V}=\mathrm{W}$ but α and β are different. If Q is the change of coordinate matrix that changes α coordinates into β coordinates, then $[T]_{\beta}=Q^{-1}[T]_{\alpha} Q$
2. Find the change of coordinates matrix that changes β coordinates into α coordinates, where β and α are the following bases of P_{2}.

$$
\beta=\left\{1, x, x^{2}\right\}, \quad \alpha=\left\{1,1+x, 1+x+x^{2}\right\} .
$$

3. Determine whether the following linear transformations are invertible. Justify your answer.
a. $\quad T: M_{2 \times 2}(\mathbf{R}) \rightarrow M_{2 \times 2}(\mathbf{R})$ defined by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a+b & a \\ c & c+d\end{array}\right)$

15 pts
b. $\quad T: M_{2 \times 2}(\mathbf{R}) \rightarrow P_{2}(R)$ by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a+2 b x+(c+d) x^{2}$.

15 pts
\qquad
4. Let $A=\left(\begin{array}{ll}1 & 3 \\ 1 & 1\end{array}\right)$ and $\beta=\left\{\binom{1}{1},\binom{1}{3}\right\}$. Find $\left[L_{A}\right]_{\beta}$. Also find an invertible matrix Q such that $\left[L_{A}\right]_{\beta}=Q^{-1} A Q . \quad 20$ pts
5. Let $T: P_{2} \rightarrow \mathbf{R}$ by $T(p(x))=\int_{0}^{1} 3 p(x) d x$. Let $\beta=\left\{1, \mathrm{x}, \mathrm{x}^{2}\right\}$ be the standard basis of P_{2} and $\alpha=\{1\}$ be the standard basis of R. Find $[T]_{\beta}^{\alpha}$.

