Homework exercises on reduced echelon form

1. Let \mathbf{R} be the following matrix in reduced echelon form:

$$
\mathbf{R}=\left(\begin{array}{cccccc}
1 & -3 & 0 & 0 & 2 & 1 \\
0 & 0 & 1 & 0 & 4 & 5 \\
0 & 0 & 0 & 1 & 6 & 7
\end{array}\right)
$$

(a) Identify the pivot columns and free columns, and corresponding pivot variables and free variables.
(b) Find the special solutions to $\mathbf{R X}=\mathbf{0}$ corresponding to each free variable. One free variable is 1 and the other free variables are 0 . Solve for the pivot variables.
(c) Show that the set of these special solutions is linearly independent and is a basis for $N(\mathbf{R})$.
2. You are in contact with a secret agent in Ukraine. He sent you a list of special solutions to $\mathbf{R X}=\mathbf{0}$, for a matrix \mathbf{R} in reduced echelon form, but he did not send you \mathbf{R} :

$$
\mathbf{s}_{1}=\left(\begin{array}{c}
-7 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \mathbf{s}_{2}=\left(\begin{array}{c}
-2 \\
0 \\
-3 \\
1 \\
0 \\
0
\end{array}\right), \mathbf{s}_{3}=\left(\begin{array}{c}
6 \\
0 \\
-5 \\
0 \\
-4 \\
1
\end{array}\right)
$$

(a) How many columns does \mathbf{R} have? What is the rank of \mathbf{R} ?
(b) Identify the pivot columns and free columns of \mathbf{R}.
(c) Find R.

