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which has no real zeros because, for 0 < & <, the discriminant 4 cos® ¢ — 4
is negative.

EXERCISES

1. Label the following statements as true or false.

(a) Every linear operagor on an n-dimensional vector space has n dis-
tinct eigenvalues.

(b) If a real matrix has one eigenvector, then it has an infinite number
of eigenvectors.

(c) There exists a square matrix with no eigenvectors.

(d) Eigenvalues must be nonzero scalars.

(e) Any two eigenvectors are linearly independent.

(f) The sum of two eigenvalues of a linear operator T is also an eigen-
value of T.

(g) Linear operators on infinite-dimensional vector spaces never have
eigenvalues.

(h) An n x n matrix A with entries from a field F' is ‘-3111‘].1]3.1" to a
diagonal matrix if and only if there is a basis for F® con51st1nrf of -

eigenvectors of A.

(i) Similar matrices always have the same eigenvalues.

(j) Similar matrices always have the same eigenvectors.

(k) The sum of two elgenvectors of an operator T is always an e1gen~
vector of T.

9 Tor each of the following linear operators T oun a vector space V and
ordered bases [, compute [T]g, and determine whether 3 is a basis
consisting of eigenvectors of T.

o v=r ()= (%) weo={(). ()}

(b) V =Pi(R), T{a+bz) = (6a — 6b) + (12a — 11b)z, and
8 =1{3+4z,2+ 3z}

a 3a+2b—2¢
() V=R, T{b|=|-4a-3b+2|,and
c/ —c
0 1 1
g= 1],1-11],10
1 0 2

(d) V=Py(R), Tla+bz+cz?) =
(—da +2b— 2¢) — (Ta+3b+ Tcjz + (7o + b+ 5c)z”

andﬁ:{;cf;g{—ler?,—lﬁm—l—f}
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(€) V=Ps(R), Tla+bz+cz? +da®) =
—d+ (—c+d)z+ (a+b— 207" + (—b+ ¢ — 2d)2®
aﬂdﬁ: {1_$+$371+-w2,11$+$2}_

(f) szgxz‘(R),T(“ b)_ ~Ta~4db+dc—4d b
¢ &) T\-8a—ab+5c—4d 4) ™I

b”:{(l (})J -1 2\ {1 0\ /-1 ©
1 0 G 0/°\2 0)° 0 2
3. For each of the following matrices A € My xn (F)

(i) Determine all the eigenvalues of A.

(ii) For each eigenvalue A of A, find
ing to A. nd the set of eigenvectors correspond-

(iif) If possible, find a basis for F” consisting of eigenvectors of A.

{iv) If successifgl in finding such a basis, determine an invertible matrix
@ and a diagonal matrix I such that @ 1AQ = D.

(a) _.A:G g) for F =R

0 —2 -3
(b) A={-1 1 -1 for F=— R
2 2 5

(c) A:G _1) for I =

{2 0 -1
(d) A=f4 1 — for =R

For_ea;c:h linear operator T on V, find the eigenvalues of T and an ordered
basis 3 for V such that [Tz is a diagonal matrix.

(a) V=R?and T(a,b) = (—2a + 3b,—10a + 9b

(b) v= Rg and T(a,b,¢) = (Ta — 4b 1+ 10¢, 4a —) 3b+ 8¢, —2a+b— 2c)
(c) V=R?and T(a,b,c) = (—4a-+3b—6c,6a — Th+ 12¢, 60 —6b+11c)
(d) V=Py(R) and T(az +b) = (60 + 2Zb)z + (—6a +b)

() V= Py(R) and T(F(x)) = 2(z) + f(2)a+ £(3)

(£) V=Ps(R) and T(f(2)) = f(z) + f(2)z

(&) V=P3(R) and T(f(2)) = zf'(z) + £"(z) — f(2)

(B) V =Myyo(R) and T (a b) (d b)

d e a
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(i) V= Maxp(R) and T (f; 2) - (z ‘;)
() V= Maxa(R) and T(4) = A* +2-ts(4) - I

5. Prove Theorem 5.4.

6. Let T be a linear operator on a finjte-dimensional vector space V, and
let 3 be an ordered basis for V. Prove that A is an eigenvalue of T if

and only if X is an cigenvalue of [T]g.

7. Let T be a linear operator on & finite-dimensional vector space V. We
define the determinant of T, denoted det(T), as follows: Choose any
ordered basis 3 for V, and define det(T) = det{[T]s).

(a) Prove that the preceding definition is independent of the choice
of an ordered basis for V. That is, prove that if 3 and «y are two
ordered bases for V, then det([T]z) = det([T],)-

(b} Prove that T is invertible if and only if det(T} # 0.

(c) Prove that if T is invertible, then det(T—1) = [det(T)] ™"

(d) Prove that if U is also a linear operator on V, then det(TU)
det(T) - det(U).

(e) Prove that det(T — Aly) = det([T]g — Af) for any scalar A and any

ordered basis 8 for V.

8. (a) Provethata linear operator T ona finite-dimensional vector space
is invertible if and only if zero is not an eigenvalue of T.
(b) Let T be an invertible linear operator. Prove that a scalar A is an
eigenvalue of T if and only if A1 is an eigenvalue of Tt
(c) State and prove results analogous to (a) and (b) for matrices.

9. Prove that the eigenvalues of an upper triangular matrix M are the
diagonal entries of M.

10. Let V be a finite-dimensional vector space, and let A be any scalar.

(a) For any ordered basis 3 for V, prove that [Alv]g = AL
{(b) Compute the characteristic polynomial of Aly.
(¢) Show that Aly is diagonalizable and has only one eigenvalie.

11. A scalar matrix is a square matrix of the form M for some scalar A;
that is, a scalar matrix is a diagonal matrix in which all the diagonal
entries are equal.

(a) Prove that if a square matrix A is similar to a scalar matrix Al

then A = Al

gecalar matrix.

(b) Show that a diagonalizable matrix having only one eigenvalue is a
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lC p 1 1y . .
(c) Prove that (0 1) is not diagonalizable,

12. (a) Prove that similar matrices have the sa

mial. me characteristic polyno-

b) Sh . o
(b) ow that the definition of the characteristic polynomial of a linear

&perator on a finite-dimensional is 1
bie clictes of ba o vector space V is independent of

13. Let T be a linear o
perator on a finite-dimensi
field F, let 5 be an ordered basis for V, and ;);;E]JAViCtor space V over a

to Figure 5.1, prove the following. [T]g- In reference

a) If i i
(a) u 'ténia 1\/ &B\Id ta(v) Is an eigenvector of A corresponding to th
b) Ifg)\ " ue A, then v is an eigenvector of T corresponding to A ’
an eigenvalue of A (and hence of T), then a vector iy e' Fr

is an eigenvector of A corres ; .
. ponding to A if TN R
an eigenvector of T corresponding t§ N it and only if ¢ (y) is

14.7 For any square matri
atrix A, prove that A and At h
- al : , ave the s
teristic polynomial (and hence the same eigenvalues) e same chorac-
15.7 ¢y i
(a) ;et T be a linear operator on a vector space V, and let z be
genvector of T corresponding to the eigenvalue A. For any po:iIl

tive integer m . )
, prove that = is an
to the eigenvalue A™. eigenvector of T corresponding

(b} State and prove the analogous result for matrices.

16. (a) Prove that similar matrices have the same
. cise 13 of Section 2.3,
(b) How would you define the trace of a linear operator on a fnite-

dimensional vector space? .
defined. pace! Justify that your definition is well-

trace. Hint: Use Exer-

| 17. Let T be the linear operator on My.xn(R) defined hy T(A} = A*

((;3 ]Sshow ‘that +1 are the only eigenvalues of T.
) Fi(:ici:nbe lt]ze elge;)lvectors corresponding to each eigenvalue of T
an ordered basi -

Tind sis 5 for May2(R) such that [Tz is a diagonal

(d) Find an ordered basis 3 for Mpxn(R) such that

matrix for n > 2. [Tls is a diagonal

“18. Let AR € Man(C)_

(a) gfogrz that i_f.B is iIllvertible, then there exists a scalar ¢ € ¢ such
at A+ cB is not invertible. Hint: Examine det(A + ¢B) o
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d A+cB
(b) Find nonzero 2 x 2 matrices A and B such that both A an.

are invertible for all e € C.

. C iStf: an n-
I 9 l,;e A aitx 5. o ha. th

l (1 B be Sln’lﬂdl‘ 1 X i 1Matrlc l rove t t ere ex

| (hl[l@llSl'()Ilal VeCt(JI Space \/5 a hﬂea}. ()pel"ator I on V, &nd Or(ie! e(l bab(‘ls

6 (i Y f(}I V SLlCh that .{1 — l]ﬁ‘ alld. B _— I ¥ J}'Mlt. []Se EXQIClSG 14:
an

of Section 2.5.

20. L t A. b anmn Xn a C C‘LE 151LIC pO yn()[lila
& € an ¥ TIX W, h hara 4 ]

Prove that f(0) = ag = det(4). Deduce that A is invertible if and only
TOVE a. -
if agp 7£ 0.

21. Let A and f(¢) be as in Exercise 20. A » A
- — A —1 (Agz*f)"' 'fn.'n,* 3 1 1
(a) ’-Provp eof}]?zzig% of c(leg?ee a)t most n—2. Hint: Apply mathematica

isa

induction to n. -
(b) Show that tr(4) = (—1)" " tan—1-

field F,
! i tor space V over the
22." (a) Let T be a linear operator on a vec . -anCS Y over the B
d let g{t) be a polynomial with coellicie - m F. Prove that
. icenvector of T with corresponding eigen ¢ ,C then
lf('S{:')I(S ;m egg(A)'): That is, z is an eigenvector of g(T) wi
g(T)(z) = g(A)z. :
ding eigenvalue g(A). | -
b) 8811);21?13 ar?d prove a cormparable resul‘t for mat{:;]c:lesOlynm:ﬁia1 @
(( ) Verify (b) for the matrix A in Exercise 3(a) with p f
c) Ver

z sponding eigenvalie
212 — t + 1, eigenvector x = (3), and corresp

A=4.

(t) 1 acteristic polynomial
Use Exercise 22 to prove that if f{) is the charjc_f_enstzz Zpercg)n; -
R diagonalizable linear operator T, then f(T) = O,t e 7ero oper
o (EgScction 5.4 we prove that this result does not dep
tor. g .

diagonalizability of T.)
24. Use Exercise 21(a) to prove Theorem 5.3.
25. Prove Corollaries 1 and 2 of Theorem 5.3.

- 5’ T11 1Ces
6 D teII 11T} 11@ bel O 13 }13 al p TLOTIL.
fd lﬂCt C I (;teI]Sl 1C ()l O 13415 ()f atrice
2 e me t panial
M2X2( :2)‘
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5.2  DIAGONALIZABILITY

In Section 5.1, we presented the diagonalization problem and observed that

not all linear operators or maltrices are dia,
obtain a necessary and suf.
5.1 p. 246), we have not yet
11 needed is a simple test to
an be diagonalized, as well as 4
a basis of eigenvectors. In this section, we develop

solved the diagonalization problem. What is sti
deterinine whether an operator or a matrix ¢
method for actually finding
such a test and method.

In Example 6 of Section 5.1, we obtained a b

ing one eigenvector cdrresponding to each eigenvalue. In general, such g
procedure does not yield a basis, but the following theorem shows that any
set constructed in this manner is linearly independent.

asis of eigenvectors by choos-

Theorem 5.5. Let T be a linear operator on a vector space V, and let
ALy A2, ..., Ay be distinet eigenvalues of T, If v, Yz2,..., U are eigenvectors of

T such that X; corresponds to v; (1 <4 < k). then {uy, va, -y} s linearly
Independent,

Proof. The proof is by mathematical induction on k. Suppose that k = 1.
Then vy #£ 0 since 1 18 an eigenvector, and hence {vi}is linearty independent.
Now assume that the theorem holds for £ - 1 distinct eigenvalues, where
k—~1 21, and that we have k eigenvectors v, 1U2,..., Uy corresponding to the
distinct eigenvalues AL, A2, ., Ap. We wish to show that {vy,v,,.. . v} is
linearly independent,. Suppose that @1,83, ..., a are scalars such that

@1v1 + agvz + - 4 gy = 0. (1)
Applying T - Al to both sides of (1), we obtain

a1 (A1 — Ag)vy + ag(Ag — ApJva+ - a1 (g — AU = 0.
By the induction hypothesis {1,

U2,-- -, Uk-1} s linearly independent, and
hence

CL1(/\1 - )\g;) = CEQ()\Q — )\k) === ak‘;_()\k,l — )\k-) = 0.

Since A1, Ay, ... » Ak are distinet, it follows that A; — Ap £ 0 for 1 <i<k-—1,
Soa) =gy = --. = k-1 = 0, and (1) therefore reduces to apUr = 0. But
v # 0 and therefore o = 0. Consequently g, - @z =---=gqa; =0, and it
follows that {v;, v, ... »Ug} is linearly independent. - |

Corollary. Let T be a line

. ar operator on an n-dimensional vector space
V. If T has n distinct eigenval

ues, then T is diagonalizable.



