
Problem Solving Strategies
in Computational Geometry
Yingying Wu, ICPC NAC-NAPC Trainer, yingyingwu.io

Table of Contents

• Discretization Algorithm

• Number of holes

• Area and Circumference

• Convex hull

• Quick hull

• Incremental Methods

Tin Cutter

https://vjudge.net/problem/UVA-308

Cuts: horizontal or vertical, integer coordinates.

Each segment cut is given by its endpoints (inside the tin plate).

Some parts of tin plate can fall out and so some holes in the plate can emerge.

Predict the number of holes in the plate.

Single segment cuts are not considered to be holes.

Cuts: <= 1000, Coordinates: [-10^5, 10^5]

[-10^5, 10^5] to large to discretize. 1000 cuts: discretize to 2000 grid.

x-axis (sorted): -15, -10, -5, 5, 10, 15, 20→ 1, 2, 3, 4, 5, 6, 7

y-axis (sorted): 10, 20, 40, 50, 60→ 1, 2, 3, 4, 5

• Binary Insertion Sort or qsort, O(n log n)

• Floodfill from (0,0)

• Count number of holes:

• While there is unvisited point remaining point
(unvisited), Floodfill

Area and
Circumference

Discretization with sweeping /
alternating trick.

Area

Cuts: horizontal or vertical.

Coordinates: integer.

Each cut is rectangular.

Some parts can fall out and so some
holes in the plate can emerge.

What’s the total area of the cuts?

Area

Upper edge counter++, lower edge counter--

Sweep x-axis from left to right.

Initialization: counter = 0, area = 0

Accumulate area when counter > 0.

• At x = 1

• At y = 4 counter = 1, area = 1

• At y = 3 counter = 1, area = 2

• At y = 2 counter = 0

• At x = 2

• At y = 4 counter = 1, area = 3

• At y = 3 counter = 1, area = 4

• At y = 2 counter = 0

• At x = 4

• At y = 5 counter=1, area=5

• At y = 4 counter=1, area=6

• At y = 3 counter=1, area=7

• At y = 2 counter=0

• At x = 5

• At y = 5 counter=1, area=8

• At y = 4 counter=1, area=9

• At y = 3 counter=2, area=10

• At y = 2 counter=1, area = 11

• At y = 2 counter=0

• At x = 6

• At y = 3 counter=1, area=12

• At y = 2 counter=1, area=13

• At y = 1 counter=0

Monster Version: https://cses.fi/problemset/task/1741

Code and Tutorial: https://usaco.guide/adv/count-min?lang=cpp
Monster Version: https://cses.fi/problemset/task/1741

• We sweep from left to right over the x-
axis. Maintain a Lazy Segment Tree over
the y -coordinates.

• When we run into a left boundary of
some rectangle with y-coordinates (y_0,
y_1), increase by 1.

• When we run into a right boundary of
some rectangle with y-coordinates (y_0,
y_1), decrease by 1

• Then, for each x, we count the number
of non-zero indices (in practice, count
the amount of space covered by no
rectangles and subtract this amount
from the total).

Circumference

Upper edge counter++, lower edge counter--

Sweep x-axis from left to right.

Initialization: Circumference = 0, counter = 0

Accumulate circumference when

• Counter 0 → 1, Counter 1→ 0

(Repeat for vertical edges)

Right edge counter++, left edge counter --

Sweep y-axis from down to up.

Accumulate circumference when

• Counter 0 → 1, Counter 1→ 0

Convex hull with
Divide-and-
Conquer

Quick Hull

Divide-and-Conquer
Strategy for Convex
hull

Can we divide a point set into
subsets, find convex hull for
each subsets, and then
combine these convex hulls?

Divide-and-Conquer Strategy for Convex hull

Find the top
and bottom
point A, B

Find the
extreme points

C to AB

Find the
extreme points

D to to AB
Points inside ABC and ABD are excluded.

Divide-and-Conquer Strategy for Convex hull

Find the top
and bottom
point A, B

Find the
extreme points

C to AB

Find the
extreme points

E to to BC

Find the
extreme points

F to to AC

Find the
extreme points

D to to AB

Divide-and-Conquer Strategy for Convex hull

Find the top
and bottom
point A, B

Find the
extreme points

C to AB

Find the
extreme points

E to to BC

Find the
extreme points

F to to AC

Find the
extreme points

D to to AB

Find the
extreme points

G to to DB

Find the
extreme points

H to to AD

Divide-and-Conquer Strategy for Convex hull

Quick Hull
Complexity

Worst case complexity

Average case complexity

Complexity of
Quick Hull

• Set X to be the set of points to
the lower right of AC, say |X| = p

• Set Y to be the set of points to
the upper right of BC, say |Y| = q

• This step takes O(n).

• Say we have n points in S (to the
right of AB). The worst case is
p + q = n-1.

If the time computing the convex hull of S is T, then

Worst Case Complexity for Quick Hull

Worst Case Best Scenario

• |X| = |Y| = n/2, then

• So Case 2.

Worst Case Worst Scenario

• |X| = n - 1, then

• In this case, b = 1, so Master Theorem does not apply.

Worst Case Worst Scenario

• |X| = n - 1，

Average Case Complexity
Best case scenario: O(n)

• In the average case, points inside of ABC = points outside of ABC, i.e.,

Area(AEFB) = 2Area(ABC)

• That implies

• Average case best scenario

Average Case Complexity
Best scenario: O(n)

• Average case best scenario

• So we can not apply Master Theorem directly.

• If f and g are both required to be functions from some unbounded subset of the
positive integers to the nonnegative real numbers; then f(x) = O(g(x)) if there exist
positive integer numbers M and n0 such that f(n) ≤ Mg(n) for all n ≥ n0.1

• Given f(n) = O(n) ≤ Mn, we denote f’(n) = Mn. Then

1Michael Sipser (1997). Introduction to the Theory of Computation. Boston/MA: PWS Publishing Co. Def.7.2, p.227

Average Case Complexity
Best scenario: O(n)

This shows f’(n) satisfies Case 3 in Master Theorem,

Therefore,

Average Case Complexity
Worst scenario: O(n)

• Worst case Scenario:

• Each time fold by half gives complexity O(log n), together O(n).

Incremental
Algorithm

• Convex hull again

• Linear programming in 2D

• Kernel of polygon

• Randomized Incremental
Algorithm

Incremental Algorithm for Convex Hull

• Starting with three points (first three points in the input).

• These three points form a convex hull.

• Iterate through new points

• If already in the convex hull: ignore.

• If not in the convex hull: expand the convex hull to include the new point.

How to update
the convex hull?

• 𝑏𝑐 and 𝑐𝑑 pointing to opposite
direction relate to 𝑃!

• 𝑑𝑒 and 𝑒𝑓 pointing to opposite
direction relate to 𝑃!

So

• Delete points between b and e

• Connect 𝑏𝑃! and 𝑒𝑃!

Linear programming
(LP): a method to
achieve the best
outcome in a
mathematical model
whose requirements
are represented by
linear relationships.

Liner Programming and Reformulation

Find the points in the
intersection of planes
that are the furthest
in the direction c⃗.

Step 1. Find the points in the intersection of planes.

Step 2: Find the
points that are
the furthest in
the direction.

Cases

Case 1. No solution. Case 2. Solution is∞.

Cases

Case 3. Infinitely many solution. Case 4. Unique solution.

Discussions

• To avoid infinite solution, we bound
at [-M, M] x [-M, M].

• Can use Divide-and-Conquer and
intersect convex hulls to achieve O(n
log n) complexity.

• Best possible solution for finding the
kernel of polygon (set of points that
can see all boundary).

Incremental Algorithm

• Set V to be the (set of) solution(s)

• Adding a new half-plane.

• If V is contained in the new half-plane, pass.

• Otherwise update V to be contained in the new
half-plane. Observation: V is on the new line.

• Randomize the lines to make it most efficient.

We are looking for the farthest point in the direction 𝑐.
The other boundaries seems does not matter.

Circular Caramel Cookie

• For a fixed radius r, we can determine the number
of whole unit squares that fit in the circle.

• Determine how many squares fit in each column
using the Pythagorean Theorem,

• Use binary search to find the solution. Total time

The Northwestern Europe Regional Contest (NWERC), 2022

Trainer’s Choice

2019-2020 ICPC North America Championship, Bomas:
https://open.kattis.com/problems/bomas

Stars in a Can:
https://open.kattis.com/problems/starsinacan

NWERC 2002, The Picnic:
https://archive.algo.is/icpc/nwerc/2002/Problem.pdf

Enclosure: https://open.kattis.com/problems/enclosure

https://open.kattis.com/problems/bomas
https://open.kattis.com/problems/starsinacan
https://archive.algo.is/icpc/nwerc/2002/Problem.pdf
https://open.kattis.com/problems/enclosure

Thank you
Yingyingwu.io

